

BENHA UNIVERSITY FACULTY OF ENGINEERING AT SHOUBRA

ECE-322 Electronic Circuits (B)

Lecture #9 CAD Fundamentals

Instructor: Dr. Ahmad El-Banna

)anna

Ahmad

 \bigcirc

TREND IN MICROELECTRONICS

3

Moore's Law

كابة التندسة بشيرا

Banna Ahmad \bigcirc LO , Spring 201 Elec. Cts B, Lec#9

كاية الهندسة بشيرا

5

THE DESIGN CHALLENGES

Janna Ahmad \bigcirc Spring 2015 Lec#9 Cts B, J Elec. (

Many Design Tasks

- System specification (functionality and requirements)
- Hardware/software trade-offs
- Architecture selection and exploration
- Analysis and simulation
- Synthesis and optimization
- Implementation
- Testing and design for testability
- Verification and validation
- Design management: cooperation between tools, design flow, etc.

Design Objectives

- Unit cost: the cost of manufacturing each copy of the system, excluding NRE cost.
- NRE cost (Non-Recurring Engineering cost): The one-time cost of designing the system.
- Size: the physical space required by the system.
- Performance: the execution time or throughput .
- Power: the amount of power consumed by the system.
- Testability: the easiness of testing the system to make sure that it works correctly.
- Flexibility: the ability to change the functionality of the system without incurring heavy NRE cost.
- Correctness, safety, etc.

The Main Challenges

- System complexity
- Increasing functionality and diversity
- Increasing performance
- Stringent design requirements
- Low cost and low power
- Dependability: reliability, safety and security
- Testability and flexibility
- Technology challenges for cost-efficient implementation
- Deep submicron effects (e.g., cross talk and soft errors)

Possible Solutions:

- Powerful design methodology and CAD tools.
- Advanced architecture (modularity).
- Extensive design reuse.

)anna

Ahmad

 \bigcirc

DIFFERENT DESIGN PARADIGMS

10

Capture and Simulate

- The detailed design is captured in a **model**.
- The model is simulated.
- The results are used to guide the improvement of the design.
- All design decisions are made by the designers.

Abstraction Hierarchy

- Layout/silicon level : The physical layout of the integrated circuits is described.
- **Circuit level** : The detailed circuits of transistors, resistors, and capacitors are described.
- Logic (gate) level : The design is given as gates and their interconnections.
- Register-transfer level (RTL) : Operations are described as transfers of values between registers.
- Algorithmic level : A system is described as a set of usually concurrent algorithms.
- System level : A system is described as a set of processors and communication channels.

Describe and Synthesize Paradigm

- Description of a design in terms of behavioral specification.
- Refinement of the design towards an implementation by adding structural details.
- Evaluation of the design in terms of a cost function and the design is optimized w.r.t. the cost function.

Other Paradigms

- Y-Chart
 - Behavioral, structure & physical domain
- Core-based Design
 - Reuse of IP blocks e.g. CPU, DSP,...
- Platform-based Design
 - Customized embedded processors or software

THE TEST PROBLEMS

)anna Ahmad \bigcirc Spring 2015 Cts B, Lec#9 Elec. (

Testing and its Current Practice

- Testing aims at the detection of physical faults (production errors/defects and physical failures).
- Different from the design task, testing is performed on each individual chip, after it is manufactured (volume sensitive).
- The common approach to perform testing is to utilize an Automatic Test Equipment (ATE).

High Test Complexity

- # of transistors increases exponentially.
- # of access port remains stable.
- Implication:
 - Test Complexity Index (# of transistors per pin) increases rapidly.

Built-In Self Test (BIST)

- Solution: Dedicated built-in hardware for implementing test functions.
 - No need for expensive ATE.
 - Speed testing.
 - Concurrent test possible.
 - Support field test and diagnosis

18

A FIRST LOOK ON THE IDE

)anna Ahmad \bigcirc Spring 2015 Cts B, Lec#9 Elec. (

The Design Manager

Browse a design

限 Design Manag	er - Project ex	amples						×
File Edit View H	IDL Tasks Tools	Options \	Mindow	Help				
] 🛍 🔹 🚔 / 🍜	🔄 🚽 🕹 📭 I	R × d	P A	_ 🔍 🗉	🔒 🗛 🕄	3 🗹 🕄		
🐘 * 🕰 * 🔎 🐼 🖬 * 😻 * 🕅 * 💆 * 📶 *								
Main	Design Explorer [Using viewp	oint: Defa	ault Viewpoint (F	Filtered) - Don	t Touc ?	×	•
	Design Unit		Туре	Extends	Language	Time Stam	р	5
HOL	🗉 🔟 SCRATCH	+_LIB					^	E.
	🚊 🔤 acc	umulator	Module		Verilog '95	Mon Sep 29		ŤΡ
New / Add		accumulator	Module		Verilog '95	Mon Sep 293		ad
-	😑 🖓 🔁 cor	itrol	Module		Verilog '95	Mon Sep 29		ns.
	- -	control	Module		Verilog '95	Mon Sep 29	Ξ	ЬВ
	E fibg	en	Module		Verilog '95	Mon Sep 29:		Ū.
Check		hibgen	Module		Verilog '95	Mon Sep 29.		186
		en_to libren ib	Module		Verilog '95	Mon Sep 29 . Mon Sep 29 .		<u>-</u>
	E the	noger_w	Module		Verilog '95	Mon Sep 291		as
		fihaen teste	r Module		Verilog '95	Mon Sep 231 Mon Sep 291	~	L/S
Simulate	<	hbgon_tooto			remog oo	>	-	e i
	Files			Туре	Extend	ls Size		plate
	🗉 📝 DesignC	hecker					^	s
3 B 1	🔽 🐼 Docume	ntation & V	isualizati	ion				
Synthesize	- C HTML							
	🗄 🔄 Visua							
	⊟- ⊑ ⊅ s	CRATCH_LIE	В					
	- Kalanda accumulator			Module		24 40		
Document &				Flow Chart		34 K.B	Ξ	
Visualize				State Mac	oine	42 K D		
				Module	Madule			4
				Block Diac	Block Diagram			
				Module				
	🖉 🖓 struct			Block Diag	Block Diagram			
	🖃 🔤 🐻 fibgen_tester			Module	Module			
Explore	2 🖧 flow			Flow Chart		38 KB	¥	
Tasks	<					>		
Viewpoints	Project SCRA	TCH_LIB						

)anna © Ahmad] Elec. Cts B, Lec#9, Spring 2015

Tasks

- Install the suitable IDE to you
 - Xilinx ISE[®]
 - FPGA Advantage [®]
 - Open Source tools
 - qucs (Quite Universal Circuit Simulator)
 - ChipVault
 - ...
 - find more @ <u>http://www.vlsiacademy.org/open-source-cad-tools.html</u>
- Create a new project.
- Develop & Simulate basic logic gates e.g AND, OR, XOR,

- For more details, refer to:
 - Computer Aided Design of Electronics course lecture notes.
 - The VHDL Cookbook, Peter J. Ashenden, 1st edition, 1990.
- The lecture is available online at:
 - http://bu.edu.eg/staff/ahmad.elbanna-courses/12135
- For inquires, send to:
 - <u>ahmad.elbanna@feng.bu.edu.eg</u>